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Organic semiconductors that consist of conjugated oligomers
or polymers are the subject of considerable current research
interest, owing to their fundamental optoelectronic properties and
their potential applications ranging from photodiodes1 to light-
emitting devices (LEDs)2 and thin film transistors (TFTs).3

Oligomers of thiophenes, typically the hexamer of thiophene
(sexithiophene,R-6T) or its derivatives, have dominated as the
active organic materials for TFTs4-6 and exhibit high field-effect
charge mobility (0.02 cm2/V s for R-6T and 0.05 cm2/V s for
R,ω-dihexyl-6T, respectively). High on/off ratios up to 106 have
been achieved in these systems. Recently, record high mobilities
of 0.3-0.7 cm2/V s have been reported for films of commercially
available pentacene by successfully controlling the morphology
during fabrication,7,8 although a lower mobility of 10-6 to 10-3

cm2/V s had been previously recorded.9-11 The high mobility
has been associated with both theπ-stacking and the macroscopic
highly ordered pentacene films which exhibit essentially “single
crystal like” morphology.12 Realizing the importance ofπ-stack-
ing, Katz and co-workers13 have recently successfully synthesized
a new high mobility (0.04 cm2/V s) organic TFT material, bis-

(benzodithiophene). Here, we report another approach to the
design and synthesis of new organic semiconductors for TFT
application, using the fused thiophene derivative, dithieno[3,2-
b:2′,3′-d]thiophene (2a) as a building block. The dimer of the
fused thiophene,R,R′-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT)
(3), was found to have an unusualπ-stacked structure, a high
mobility (up to 0.05 cm2/V s), and a very high On/Off ratio (up
to 108) in the best present device evaluations.
The building block214 was prepared from 3-bromothiophene

(1) (Scheme 1). The “dimerization” was carried out through a
coupling reaction of the lithiated monomer2b using ferric
acetylacetonate as the oxidative coupling reagent.15 BDT (3) was
sufficiently soluble in boiling toluene or hot DMF to allow
recrystallization and was slightly soluble in warm THF (2 g/L)
for characterization by1H NMR. The microcrystalline powder
thus obtained has a gold-like luster and shows no chemical change
when stored under ambient conditions over several months.
Although the monomer2melts at 67°C, its “dimer” BDT (3)

melts at 316°C, as revealed from hot-stage microscopic observa-
tion under polarized light and differential scanning calorimetry
(DSC) measurement, which implies the presence of very strong
intermolecular interactions. After melting, BDT begins to sublime
and is chemically stable below 350°C, as suggested from
thermogravimetric analysis (TGA) in nitrogen. It sublimed in
vacuo (10-4 to 10-5 Torr) at 200°C, allowing further purification
to meet the stringent requirement for application in TFTs.
BDT (3) exhibits orange fluorescence in the solid state and a

blue emission when irradiated in dilute solution with UV light.
A HOMO-LUMO gap of 2.8 eV in dilute chloroform solution
was observed from the absorption edge (440 nm), and a 2.3 eV
energy gap was obtained from the emission peak (547 nm) of a
thin film (Figure 1).
The cyclic voltammetry of a BDT film on Au-coated glass is

shown in Figure 2. A distinct color change from yellowf brown
f yellow was observed upon oxidative sweeping from 0f +0.9
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Figure 1. The absorption and emission spectra of BDT (3). UV-vis
was measured in dilute chloroform solution. The solution PL was excited
at 390 nm, and the solid-state PL was at 340 nm.

Scheme 1
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f 0 V [(vs ferrocene/ferrocenium (Fc/Fc+)], indicating a quasi-
reversible p-doping (or hole injection) process that is probably
related to the formation of a radical cation.16 The reduction sweep
showed a reversible n-doping (or electron injection) with no
change in color. The electrochemically determined HOMO-
LUMO gap of 2.3 eV is in good agreement with that measured
from the emission spectrum of the film. When the oxidation
potential was larger than 1.2 V, the color changed to dark green,
indicating the possible formation of a dication which is also quite
common for conjugated polymers.16,17

Slow cooling of a saturated solution of BDT in hot toluene
afforded small crystals, which were too small for standard
laboratory X-ray diffractometry. To determine the structure, it
was necessary to exploit the high intensity of a synchrotron
radiation source. Hence, using a crystal of volume 500-1000
times smaller than a typical single crystal necessary for laboratory
X-ray analysis, we were able to determine (with synchrotron
radiation microcrystal diffraction facilities) an extremely high
quality crystal structure.18 The crystal structure of BDT revealed
a completely coplanar conformation with a uniqueπ-π stacking
feature (Figure 3) which is significantly different from the
herringbone packing found in sexithiophene19 and pentacene.20

The shortest distance between carbon atoms in two face-to-face
molecules is 3.557 Å (3.394 Å for sulfur atoms in two adjacent
molecules), indicating a very compressed molecular packing and
strong intermolecular interactions.
Field-effect measurements were carried out on TFTs using

vacuum-sublimed BDT (3) as the active layer. Top-contact TFTs
and bottom contact TFTs have been fabricated.21 Distinct field
effects using BDT as the active layer were observed for TFTs in
both configurations. The negative signs of both gate voltage (VG)

and source-drain current (IDS) indicate that BDT is a typical
p-type semiconductor (Figure 4). The field-effect mobilities
measured in the saturation regime (VDS > VGS) were 0.02-0.05
cm2/V s for top contact TFTs, which is slightly higher than the
best values recorded forR-6T and bis(benzodithiophene) TFTs.13

Similar mobilities were also achieved for bottom-contact TFTs
in which the BDT film was vacuum-deposited on silicon wafer
substrates at 100°C to achieve a better ordered film. Exception-
ally high on/off ratios (up to 108) with sharp turn-on characteristics
comparable to that of amorphous silicon TFTs were achieved (sub-
threshold slopeS) 0.6 V/decade) for the bottom-contact TFTs.
The X-ray diffraction data of the sublimed BDT films together
with the device characteristics indicate that the high mobility is
along theπ-π stacking direction, and it is presumed that the
mobility is lower along the molecular axis.22

In summary, it is considered that the high mobility and high
on/off ratio for BDT-based TFTs are attributed to the closely
packed face-to-face stacking and the wide HOMO-LUMO gap
of the material. We expect that higher mobilities may be possible
for BDT by increasing the granular size of the polycrystalline
film.
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Figure 2. Cyclic voltammogram of BDT film on Au-coated glass at a
full sweep from 0f +0.9 f 0 f -1.7 f 0 V at 20 mV/s [0.1 M
Et4NBF4 in CH3CN as electrolyte, a platinum gauze as counter electrode,
a Ag wire as quasi-reference, and referenced against the Fc/Fc+ redox
couple (E° ) 0.42 V)].

Figure 3. Packing view of a BDT single crystal perpendicular to thebc
plane.

Figure 4. Source-drain current vs voltage characteristics of BDT TFTs
(top-contact configuration) at different gate voltages. BDT was sublimed
at ca. 200°C onto a substrate maintained at room temperature.
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